Abstract
This study proposes and evaluates a relatively new concept for fire occurrence zoning based on documented historical fire records. The proposed method creates continuous kernel density surfaces based on wildland fire ignition observations. Kernels have the advantage of directly producing density estimates that are not influenced by grid size or localization effects. Within this scheme, kernel density surfaces have been created and reclassified to construct fire occurrence zones at local to global scales in the Mediterranean Basin. Specifically, fire occurrence zones were created for the European scale (European Mediterranean Basin), national scale (Greece), regional scale (Peloponnese, Greece) and local scale (Chalkidiki, Greece). To evaluate fire occurrence zones, we compared the observed with the expected distribution of the number of fires within these zones using a Monte Carlo randomization test, finding that these numbers were statistically different in all cases. The deviations observed from the expected distributions towards the high occurrence zone indicated their successful assessment and value. In this paper, we further discuss their potential role and use for multi-scale fire management and policy in a European context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.