Abstract
Metallic dust layers are highly sensitive to ignition from common ignition sources, even when mixed with high percentages of inert solids. In turn, dust layer fires are a potential ignition source for dust explosions or other damaging fires. Flame spread velocity (FSV), as a potential parameter for evaluating fire hazard, was investigated for titanium powder layers mixed with inert nano TiO2 powder in both natural convection and in forced airflow conditions. Increased mass percentage of nano TiO2 powder decreased FSV of Ti powder mixtures as expected. The mixing ratio of nano TiO2 to fully suppress layer fires was 80% and 90% for micro and nano Ti powder, respectively. Mechanisms governing flame spread across a layer of nano Ti powder differed from those of a layer of micro Ti powder. FSV in no airflow conditions was higher than in aided airflow for micro Ti powder because conduction was the dominant heat transfer mechanism. However, FSV in no airflow was lower than in opposed airflow for nano Ti powder because convection/radiation was the dominant heat transfer mechanism. A fly fire phenomenon contributed to greater FSVs and higher fire hazard with nano Ti powder mixtures under aided airflow conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.