Abstract

We consider a deterministic discrete-time model of fire spread introduced by Hartnell [Firefighter! an application of domination, Presentation, in: 20th Conference on Numerical Mathematics and Computing, University of Manitoba in Winnipeg, Canada, September 1995] and the problem of minimizing the number of burnt vertices when a fixed number of vertices can be defended by firefighters per time step. While only two firefighters per time step are needed in the two-dimensional lattice to contain any outbreak, we prove a conjecture of Wang and Moeller [Fire control on graphs, J. Combin. Math. Combin. Comput. 41 (2002) 19–34] that 2 d - 1 firefighters per time step are needed to contain a fire outbreak starting at a single vertex in the d-dimensional square lattice for d ⩾ 3 ; we also prove that in the d-dimensional lattice, d ⩾ 3 , for each positive integer f there is some outbreak of fire such that f firefighters per time step are insufficient to contain the outbreak. We prove another conjecture of Wang and Moeller that the proportion of elements in the three-dimensional grid P n × P n × P n which can be saved with one firefighter per time step when an outbreak starts at one vertex goes to 0 as n gets large. Finally, we use integer programming to prove results about the minimum number of time steps needed and minimum number of burnt vertices when containing a fire outbreak in the two-dimensional square lattice with two firefighters per time step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.