Abstract

This study focuses on an epoxy novolac-based hot-melt prepreg resin system cured with dicyandiamide for purpose of aircraft interiors. The influence of the phosphorus-based reactive flame retardant 9,10-dihydro-9-oxa-10-phos-phaphenanthrene-10-oxide (DOPO) as a function of its concentration on the flammability behaviour of the cured neat resin is investigated by UL 94 testing. Besides this, the efficiency of boehmite as synergistic flame retardant is examined at two levels of DOPO content. The effect of the specific flame retardants on the mechanical properties of the cured resin formulations is evaluated by tensile and fracture toughness testing. Glass transition temperatures are measured using dynamic mechanical analysis. It is shown that the flame retardancy is significantly improved with increasing phosphorus content whereas the glass transition temperature decreases. The fracture toughness is not affected within the considered range of phosphorus content. The addition of boehmite to the modified resins leads to further improvement in flame-retardant behaviour. Moreover, it is presented that the fracture toughness increases with higher content of this mineral microfiller while the elongation at break is not lowered for boehmite loadings up to approximately 25 wt.%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.