Abstract

Chronic eosinophilic leukemia (CEL) is a rare myeloproliferative neoplasm characterized by the FIP1L1-PDGFRA fusion gene, variant PDGFRA fusions or other genetic lesions. Most FIP1L1-PDGFRA positive patients enjoy durable and complete molecular responses to low-dose imatinib (Glivec/Gleevec). However, resistance mediated by a T674I mutation in the ATP-binding pocket of PDGFRA has been reported in advanced disease, and sorafenib, a potent inhibitor of RAF-1, B-RAF, VEGFR and PDGFR, is active against this mutant in vitro. We describe a case of FIP1L1-PDGFRalpha T674I CEL in blast crisis that responded to sorafenib (Nexavar). However, this clinical response was short-lived because of the rapid emergence of a FIP1L1-PDGFRalpha D842V mutant. An N-Nitroso-N-ethylurea-mutagenesis screen indeed identified this mutant as a major sorafenib-resistant mutant. In vitro, the novel FIP1L1-PDGFRalpha D842V mutant is highly resistant to sorafenib, imatinib, dasatinib (Sprycell) and PKC412 (Midostaurin). Thus, sorafenib is clinically active in imatinib-resistant FIP1L1-PDGFRalpha T674I CEL, but the rapid emergence of other mutants may limit the response duration. The identification of new PDGFR inhibitors will be required to overcome resistance by this D842V mutant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.