Abstract

Alfven ionization is offered as a possible mechanism underlying the enhanced population of low first ionization potential (FIP) species in the solar corona. In this process, the photospheric flow impinging on the magnetic structure of a coronal flux tube collides with, and displaces, ions in the magnetised plasma within the flux tube. This leads to pockets of charge imbalance that persist due to the impeded electron transport perpendicular to the magnetic field. The localised electric field then energises electrons to the impact ionization energy threshold of low-FIP components in the surface flow. Such species remain trapped in the plasma, and drift up the magnetic structure, causing a localised population enhancement compared to photospheric levels. We find that this mechanism successfully accounts for observed biases for flow speeds known to exist in the photosphere, and moreover explains certain anomalous abundances which do not fit into existing theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.