Abstract

We give a geometric interpretation of the maximal Satake compactification of symmetric spaces $X=G/K$ of noncompact type, showing that it arises by attaching the horofunction boundary for a suitable $G$-invariant Finsler metric on $X$. As an application, we establish the existence of natural bordifications, as orbifolds-with-corners, of locally symmetric spaces $X/\Gamma$ for arbitrary discrete subgroups $\Gamma< G$. These bordifications result from attaching $\Gamma$-quotients of suitable domains of proper discontinuity at infinity. We further prove that such bordifications are compactifications in the case of Anosov subgroups. We show, conversely, that Anosov subgroups are characterized by the existence of such compactifications among uniformly regular subgroups. Along the way, we give a positive answer, in the torsion free case, to a question of Ha\"issinsky and Tukia on convergence groups regarding the cocompactness of their actions on the domains of discontinuity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.