Abstract

In this paper, a finned heat pipe assisted passive heat sink based on a newly emerging high performance phase change material (PCM), the low melting point metal (LMPM), was developed for thermal buffering of high power electronics which works intermittently with heat generation rate up to 1000 W (10 W/cm2). Firstly, thermal performances of the PCM heat sink under different thermal shocks (from 200 W to 1000 W) were experimentally evaluated, in comparison with that of an organic PCM which has similar melting point. It was found that, the former one can prolong the working duration 1.4–2.4 times that of the latter one. Then, the performance of the heat sink was improved through reducing the contact thermal resistance and by increasing the fin number. Furtherly, an air cooling radiator was configured to accelerate the solidification process of the PCM module, which makes it capable of maintaining its highest temperature below 85 °C under 1000 W periodic thermal shock (10 min on and 15 min off). Moreover, energy dispersive spectrometer (EDS) analysis was conducted to verify the compatibility of the LMPM PCM and the structural materials. Finally, a simplified numerical model was developed and validated for the currently constructed finned heat pipe assisted LMPM PCM heat sink, which can be much helpful for future practical thermal design and optimization of this kind of thermal buffering module.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.