Abstract

This paper focuses on semistability and finite-time stability analysis and synthesis of systems having a continuum of equilibria. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial conditions. In this paper, we merge the theories of semistability and finite-time stability to develop a rigorous framework for finite-time semistability. In particular, finite-time semistability for a continuum of equilibria of continuous autonomous systems is established. Continuity of the settling-time function as well as Lyapunov and converse Lyapunov theorems for semistability are also developed. In addition, necessary and sufficient conditions for finite-time semistability of homogeneous systems are addressed by exploiting the fact that a homogeneous system is finite-time semistable if and only if it is semistable and has a negative degree of homogeneity. Finally, we use these results to develop a general framework for designing semistable protocols in dynamical networks for achieving coordination tasks in finite time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call