Abstract
This paper studies the finite-time lag synchronization issue of master-slave complex networks with unknown signal propagation delays by the linear and adaptive error state feedback approaches. The unknown signal propagation delays are fully considered and estimated by adaptive laws. By designing new Lyapunov functional and discontinuous feedback controllers, which involves the estimated error rather than the general synchronization error, sufficient conditions are derived to ensure lag synchronization of the networks within a setting time. It is interesting to discover that the setting time is related to initial values of both the estimated error and the estimated unknown signal propagation delays. Finally, two numerical examples are given to illustrate the effectiveness and correctness of the proposed finite-time lag synchronization criteria.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.