Abstract

The paper deals with the problem of finite-time $$L_1$$L1 control for positive Markovian jump systems with partly known transition rates. Firstly, by constructing a linear co-positive Lyapunov function, sufficient conditions for finite-time boundedness and $$L_1$$L1 finite-time boundedness of the open-loop system are developed. Then, an effective method is proposed for the construction of the state feedback controller. These sufficient criteria are derived in the form of linear programming. A key point of this paper is to extend the special requirement of completely known transition rates to more general form that covers completely known and completely unknown transition rates as two special cases. Finally, two examples are given, which include a mathematical model of virus mutation treatment to illustrate the validity of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.