Abstract

In this paper, we investigate the filtering problem of discrete-time Takagi–Sugeno (T–S) fuzzy uncertain systems subject to time-varying delays. A reduced-order filter is designed. With the augmentation technique, a filtering error system with delayed states is obtained. In order to deal with time delays in system states, the filtering error system is first transformed into two interconnected subsystems. By using a two-term approximation for the time-varying delay, sufficient delay-dependent conditions of finite-time boundedness and $H_{\infty }$ performance of the filtering error system are derived with the Lyapunov function. Based on these conditions, the filter design methods are proposed and the filter gain matrices can be obtained by calculating a set of linear matrix inequalities. A numerical example is used to illustrate the effectiveness of the proposed approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.