Abstract

In this paper, the finite-time group consensus for a class of heterogeneous multi-agent systems (HMASs) with bounded disturbances is studied by designing a pinning control scheme with an integral sliding mode. For an HMAS without disturbance, a continuous finite-time consensus protocol with a pinning and grouping strategy is proposed. Under the designed control protocol, the HMAS achieves consensus according to the given grouping requirement in a finite time and the final states converge to the desired consistency values. The detailed theoretical proof is given on the strength of Lyapunov theory, LaSalle’s invariance principle and homogeneity with dilation principle. On this basis, this paper further introduces an integral sliding mode into finite-time group consensus protocol designed above such that the HMAS with one or more pinning agents can achieve accurate finite-time group consensus even if there exist uncertain bounded disturbances. It is noted that the control input is chattering-free. Two simulation examples are presented to illustrate the effectiveness of the proposed control schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call