Abstract

In this paper, we develop a new finite-time formation control framework for multi-agent systems with a large population of members. In this framework, we divide the formation information into two independent parts, namely, the global information and the local information. The global formation information decides the geometric pattern of the desired formation. Furthermore, it is assumed that only a small number of agents, which are responsible for the navigation of the whole team, can obtain the global formation information, and the other agents regulate their positions by the local information in a distributed manner. This approach can greatly reduce the data exchange and can easily realize various kinds of complex formations. As a theoretical preparation, we first propose a class of nonlinear consensus protocols, which ensures that the related states of all agents will reach an agreement in a finite time under suitable conditions. And then we apply these consensus protocols to the formation control, including time-invariant formation, time-varying formation and trajectory tracking, respectively. It is shown that all agents will maintain the expected formation in a finite time. Finally, several simulations are worked out to illustrate the effectiveness of our theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.