Abstract

In this paper, finite-time fault-tolerant control (FTC) for trajectory tracking of an autonomous surface vehicle (ASV) is solved. Main contributions are summarized as follows: (1) a finite-time passive FTC (F-PFTC) scheme using integral sliding mode (ISM) manifold is developed by exploiting partial knowledge on faults and disturbances, and achieves fast and accurate tracking with passive fault tolerance; (2) an online finite-time fault estimator (FFE) is devised to detect, isolate, and accommodate unknown faults and disturbances, and thereby eventually contributing to the finite-time active FTC (F-AFTC) scheme without using a priori knowledge; (3) suffering from both unknown faults and disturbances, the proposed F-PFTC and F-AFTC schemes can track exactly an ASV to the desired trajectory. Comprehensive simulations and comparisons conducted on CyberShip II demonstrate the effectiveness and superiority of the proposed schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call