Abstract

This work develops a novel disturbance observer and integral sliding mode technique based fault tolerant attitude control scheme for spacecraft, which is subject to external disturbance torques and actuator failures. More specifically, a simple and novel finite-time disturbance observer is first designed to reconstruct the synthetic uncertainty deriving from actuator failures and disturbances, by which the synthetic uncertainty is also compensated or restricted. Then, an integral sliding mode based finite-time fault tolerant attitude stabilisation controller incorporating with an adjusting law is investigated to ensure the closed-loop attitude control system converge to the stable region in finite time. And also the finite-time stability of the closed-loop attitude control system driven by the proposed attitude control scheme is analysed and proved utilising Lyapunov methodology. Finally, a simulation example for a rigid spacecraft model is carried out to verify the effectiveness and superiority of the proposed attitude control approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.