Abstract
This paper is concerned with stochastic finite-time boundedness analysis for a class of uncertain discrete-time neural networks with Markovian jump parameters and time-delays. The concepts of stochastic finite-time stability and stochastic finite-time boundedness are first given for neural networks. Then, applying the Lyapunov approach and the linear matrix inequality technique, sufficient criteria on stochastic finite-time boundedness are provided for the class of nominal or uncertain discrete-time neural networks with Markovian jump parameters and time-delays. It is shown that the derived conditions are characterized in terms of the solution to these linear matrix inequalities. Finally, numerical examples are included to illustrate the validity of the presented results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.