Abstract

This paper proposes a new adaptive super-twisting global integral terminal sliding mode control algorithm for the trajectory tracking of autonomous robotic manipulators with uncertain parameters, unknown disturbances, and actuator faults. Firstly, a novel global integral terminal sliding mode surface is designed to ensure that the tracking errors of autonomous robotic manipulators converge to zero in finite time and the global robustness of the system is also enhanced. Then a new adaptive method is devised to deal with the adverse effect of nonlinear uncertainty. To suppress the chattering phenomenon, the adaptive super-twisting algorithm is used in this paper, which can ensure that the control torque is a continuous input signal. Based on the adaptive mechanism, the adaptive super-twisting global integral terminal sliding mode controller is developed to provide superior control performance. The stability analysis of the system is demonstrated by using the Lyapunov method. Ultimately, the effectiveness of the control scheme is confirmed by a simulation study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call