Abstract
We investigate the Hubbard model on two typical frustrated lattices in two dimensions, the kagome lattice and the anisotropic triangular lattice, by means of the cellular dynamical mean field theory. We show that the metallic phase is stabilized up to fairly large Hubbard interactions under strong geometrical frustration in both cases, which results in heavy fermion behavior and several anomalous properties around the Mott transition point. In particular, for the anisotropic triangular lattice, we find novel reentrant behavior in the Mott transition in the moderately frustrated parameter regime, which is caused by the competition between Fermi-liquid formation and magnetic correlations. It is demonstrated that the reentrant behavior is a generic feature inherent in the Mott transition with intermediate geometrical frustration, and indeed in accordance with recent experimental findings for organic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.