Abstract

We report a thorough investigation of finite-temperature effects on three-body recombination near a triatomic Efimov resonance in an ultracold gas of cesium atoms. Our measurements cover a wide range from a near-ideal realization of the zero-temperature limit to a strongly temperature-dominated regime. The experimental results are analyzed within a recently introduced theoretical model based on a universal zero-range theory. The temperature-induced shift of the resonance reveals a contribution that points to an energy-dependence of the three-body parameter. We interpret this contribution in terms of the finite range of the van der Waals interaction in real atomic systems and we quantify it in an empirical way based on length scale arguments. A universal character of the corresponding resonance shift is suggested by observations related to other Efimov resonances and the comparison with a theoretical finite-temperature approach that explicitly takes the van der Waals interaction into account. Our findings are of importance for the precise determination of Efimov resonance positions from experiments at finite temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call