Abstract

Finite-state transducers have been proven to yield compact representations of pronunciation dictionaries used for grapheme-to-phoneme conversion in speech engines running on low-resource embedded platforms. However, for highly inflected languages even more efficient language resource reduction methods are needed. In the paper, we demonstrate that the size of finite-state transducers tends to decrease when the number of word forms in the modelled pronunciation dictionary reaches a certain threshold. Motivated by this finding, we propose and evaluate a new type of finite-state transducers, called ‘finite-state super transducers’, which allow for the representation of pronunciation dictionaries by a smaller number of states and transitions, thereby significantly reducing the size of the language resource representation in comparison to minimal deterministic final-state transducers by up to 25%. Further, we demonstrate that finite-state super transducers exhibit a generalization capability as they may accept and thereby phonetically transform even inflected word forms that had not been initially represented in the original pronunciation dictionary used for building the finite-state super transducer. This method is suitable for speech engines operating on platforms at the edge of an AI system with restricted memory capabilities and processing power, where efficient speech processing methods based on compact language resources must be implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.