Abstract

Recently, there has been an increase in the use of finite-set model-based predictive control (FS-MBPC) for power-electronic converters. However, the computational burden for this control scheme is very high and often restrictive for a good implementation. This means that a suitable technology and design approach should be used. In this paper, the implementation of FS-MBPC for flying-capacitor converters in field-programmable gate arrays (FPGAs) is discussed. The control is fully implemented in programmable digital logic by using a high-level design tool. This allows us to obtain very good performances (both in control quality, speed, and hardware utilization) and have a flexible, modular control configuration. The good performance is obtained by exploiting the FPGA's strong points: parallelism and pipelining. Furthermore, an improved cost function for the voltage control of the flying capacitors is proposed in this paper. Typical cost functions result in tracking control for the flying-capacitor voltages, although this does not correspond with the desired system behavior. The improved cost function offers a capacitor voltage control that corresponds more closely with the desired behavior and adds a limitation on the capacitor voltage deviation. Furthermore, the selection of the weight factor in the cost function becomes less critical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.