Abstract

We investigate finite-range effects in systems with three identical bosons. We calculate recombination rates and bound state spectra using two different finite-range models that have been used recently to describe the physics of cold atomic gases near Feshbach resonances where the scattering length is large. The models are built on contact potentials which take into account finite-range effects; one is a two-channel model and the other is an effective range expansion model implemented through the boundary condition on the three-body wavefunction when two of the particles are at the same point in space. We compare the results with the results of the ubiquitous single-parameter zero-range model where only the scattering length is taken into account. Both finite-range models predict variations of the well-known geometric scaling factor 22.7 that arises in Efimov physics. The threshold value at negative scattering length for creation of a bound trimer moves to higher or lower values depending on the sign of the effective range compared to the location of the threshold for the single-parameter zero-range model. Large effective ranges, corresponding to narrow resonances, are needed for the reduction to have any noticeable effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.