Abstract
We study the interplay between the notions of n-coherent rings and finitely n-presented modules, and also study the relative homological algebra associated to them. We show that the n-coherency of a ring is equivalent to the thickness of the class of finitely n-presented modules. The relative homological algebra part comes from the study of orthogonal complements to this class of modules with respect to the Ext and Tor functors. We also construct cotorsion pairs from these orthogonal complements, allowing us to provide further characterizations of n-coherent rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.