Abstract
To use evolution algebras to model population dynamics that both allow extinction and introduction of certain gametes in finite generations, nilpotency must be built into the algebraic structures of these algebras with the entire algebras not to be nilpotent if the populations are assumed to evolve for a long period of time. To adequately address this need, evolution algebras over rings with nilpotent elements must be considered instead of evolution algebras over fields. This paper develops some criteria, which are computational in nature, about the nilpotency of these algebras, and shows how to construct finitely generated evolution algebras which are nil but not nilpotent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.