Abstract

We study the information that a distribution function provides about the finitely additive probability measure inducing it. We show that in general there is an infinite number of finitely additive probabilities associated with the same distribution function. Secondly, we investigate the relationship between a distribution function and its given sequence of moments. We provide formulae for the sets of distribution functions, and finitely additive probabilities, associated with some moment sequence, and determine under which conditions the moments determine the distribution function uniquely. We show that all these problems can be addressed efficiently using the theory of coherent lower previsions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.