Abstract

In this paper, a finite-horizon H∞ consensus control problem is studied for multi-agent systems under the limited energy constraint. Due to the limited energy, only a part of agents can use high energy to transmit information infallibly, and the remaining agents are randomly allocated low energy with several levels, which may lead to packet loss in some sense. Different levels result in different packet dropout probability. The purpose of this paper is to design a probability-dependent controller such that, for all probabilistic energy allocation and packet dropout, the H∞ consensus performance can be guaranteed for multi-agent systems over a finite horizon. To this end, a stochastic and high-availability energy allocation method is first presented via stratified multi-objective optimization methods and stochastic analysis methods. Based on this novel allocation, a H∞ consensus controller depending on the varying energy allocation is established. Furthermore, in terms of the probability information of both energy allocation and packet dropout, important results are obtained to guarantee the desired performance of the designed probability-dependent controller, and the controller are explicitly parameterized by means of the solutions to a set of linear matrix inequalities. Finally, a simulation example is utilized to illustrate the usefulness of the proposed controller design method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.