Abstract

Moisture may significantly influence the dimensions and behavior of wooden elements and, thus, it is important to consider within both serviceability as well as ultimate limit state designs. Dimensional changes, also called swelling (during wetting) and shrinkage (during drying), are non-uniform due to the direction-dependent expansion coefficients of wood and usually lead to eigenstresses. If these exceed certain strength values, cracking may occur, which reduces the resistance to external loads, especially to shear stresses. The current standard Eurocode5 takes these circumstances very simplified into account, by so-called service classes, defined based on the surrounding climate and average moisture levels over the course of a year. Accordingly, reduction factors for strength values and cross section widths are assigned.For a better understanding of the climate-induced changes in wooden beams, we exposed 18 different beams with varying cross sections to a representative climate of Linz, Austria, within the framework of a finite element simulation and investigated the resulting moisture fields and crack patterns. For this purpose, expansions and linear-elastic stresses were simulated by using the thermal and moisture fields obtained in the first simulation step and expansion coefficients. Using a multisurface failure criterion, two critical points in time were determined for each cross section, at which advanced crack simulations were carried out using the extended finite element method. The resulting crack lengths showed that the Eurocode5 assumption of a linear relationship between crack-free and total width could be verified for both drying and wetting cases.In future, the obtained crack patterns might also be used to investigate the actual reduction of load-bearing capacities of such cross sections, since the position of a crack and, for example, the maximum shear stress may not coincide. For the first time in this work, a consistent concept is presented to estimate the resulting crack formation in a wooden element from any moisture load based on a mechanical well-founded simulation concept. For this reason, this work is intended to lay a basis for a more accurate consideration of climate-related loads on wooden elements up to timber constructions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.