Abstract

Codes/standards have been developed to calculate accurately the burst pressure for corroded pipelines. Five burst pressure models are evaluated in this paper using three-dimensional finite-element (FE) analysis. The finite-element models are validated using burst test results available in the literature. The design codes/standards are found to calculate variable burst pressures with respect to the finite-element calculations and the laboratory test results. The variability in the calculated burst pressures is attributed to the use of different flow stresses for the material and different burst pressure reduction factors for the corroded geometry. The Folias factor is considered as the major parameter contributing to the burst pressure reduction factor. Three different equations are currently used to calculate the Folias factor in the design codes that are expressed in terms of l2/(Dt). However, the finite-element evaluation presented here reveals that the Folias factor also depends on other parameters such as the defect depth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call