Abstract

This paper investigates finite-dimensional representations of PT-symmetric Hamiltonians. In doing so, it clarifies some of the claims made in earlier papers on PT-symmetric quantum mechanics. In particular, it is shown here that there are two ways to extend real symmetric Hamiltonians into the complex domain: (i) The usual approach is to generalize such Hamiltonians to include complex Hermitian Hamiltonians. (ii) Alternatively, one can generalize real symmetric Hamiltonians to include complex PT-symmetric Hamiltonians. In the first approach the spectrum remains real, while in the second approach the spectrum remains real if the PT symmetry is not broken. Both generalizations give a consistent theory of quantum mechanics, but if D>2, a D-dimensional Hermitian matrix Hamiltonian has more arbitrary parameters than a D-dimensional PT-symmetric matrix Hamiltonian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.