Abstract

Dynamical systems theory can significantly contribute to the understanding and control of fluid flows. Fluid dynamical systems are governed by the Navier-Stokes equations, which are continuous in both time and space, resulting in a state space of infinite dimension. To incorporate tools from systems theory it has become common practise to approximate the infinite-dimensional system by a finite-dimensional lumped system. Current techniques for this reduction step are data driven and produce models which are sensitive to the simulation or experimental conditions. This dissertation proposes a rigorous and practical methodology for the derivation of accurate finite-dimensional approximations and output feedback controllers directly from the governing equations. The approach combines state-space discretisation of the linearised Navier-Stokes equations with balanced truncation to design experimentally feasible low-order controllers. The approximation techniques can be used to design any suitable linear controller. In this study the reduced-order controllers are designed within an H2 optimal control framework to account for external disturbances and measurement noise. Application is focused on control of laminar wall-bounded shear flows to delay the classical transition process initially governed by two-dimensional convective perturbations, to extend laminar flow and reduce skin friction drag. The controllers are successfully tested in the vertical wind tunnel at the TU Delft.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.