Abstract

A numerical model based on the finite-difference time-domain method is developed to simulate fluctuations which accompany the dephasing of atomic polarization and the decay of excited state's population. This model is based on the Maxwell-Bloch equations with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">c</i> -number stochastic noise terms. We successfully apply our method to a numerical simulation of the atomic superfluorescence process. This method opens the door to further studies of the effects of stochastic noise on light-matter interaction and transient processes in complex systems without prior knowledge of modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.