Abstract

In order to both experimentally and numerically investigate nonlinear femtosecond ultrabroadband-pulse propagation in a silica fiber, we have extended the finite-difference time-domain (FDTD) calculation of Maxwell's equations with nonlinear terms to that including all exact Sellmeier-fitting values. We have compared results of this extended FDTD method with experimental results, as well as with the solution of the generalized nonlinear Schrodinger equation by the split-step Fourier method with a slowly varying-envelope approximation. To the best of our knowledge, this is the first comparison between FDTD calculation and experimental results for nonlinear propagation of a very short (12 fs) laser pulse in a silica fiber.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call