Abstract

The presence of fractures in reservoir rocks causes scattering of seismic wave energy. In this paper, we utilize the finite-difference modelling technique to study these scattering effects to gain more insights into the effects and assess the validity of using anisotropic wave scattering energy as a diagnostic tool to characterize fractured hydrocarbon reservoirs. We use a simplified fractured reservoir model with four horizontal layers with a fractured-layer as the third layer. The fractures are represented by grid cells containing equivalent anisotropic medium by the use of the linear slip equivalent model. Our results show that the scattered energy, quantified through estimates of the seismic quality factor (Q) is anisotropic, exhibiting a characteristic elliptical (\(\cos 2\theta \)) variations relative to the survey azimuth angle \(\theta \). The fracture normal is inferred from the minor axis of the Q ellipse. This direction correlates with the direction of maximum wave scattering. Minimum wave scattering occurs in the fracture strike direction inferred from the major axis of the Q ellipse. These results provide more complete insights into anisotropic wave scattering characteristics in fractured media and thus, validate the practical utility of using anisotropic attenuation attribute as an additional diagnostic tool for delineation of fracture properties from seismic data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.