Abstract

Numerical solutions are presented for finite-amplitude interfacial waves. Only symmetric waves are calculated. Two cases are considered. In the first case the waves are free-surface solitary waves propagating on a basic flow with uniform vorticity. Large-amplitude waves of extreme form are calculated for a range of values of the basic vorticity. In the second case the waves are propagating on the interface between two homogeneous fluids of different densities, which are otherwise at rest. Again large-amplitude waves of extreme form are calculated for a range of values of the basic density ratio. In particular, in the Boussinesq limit when the density ratio is nearly unity, solitary waves of apparently unlimited amplitude can be found.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.