Abstract

We study a one-dimensional model for two-phase flows in heterogeneous media, in which the capillary pressure functions can be discontinuous with respect to space. We first give a model, leading to a system of degenerated nonlinear parabolic equations spatially coupled by nonlinear transmission conditions. We approximate the solution of our problem thanks to a monotonous finite volume scheme. The convergence of the underlying discrete solution to a weak solution when the discretization step tends to 0 is then proven. We also show, under assumptions on the initial data, a uniform estimate on the flux, which is then used during the uniqueness proof. A density argument allows us to relax the assumptions on the initial data and to extend the existence-uniqueness frame to a family of solution obtained as limit of approximations. A numerical example is then given to illustrate the behavior of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.