Abstract

It is known that the volume function for hyperbolic manifolds of dimension ⩾ 3 is finite-to-one. We show that the number of nonhomeomorphic hyperbolic 4-manifolds with the same volume can be made arbitrarily large. This is done by constructing a sequence of finite-sided finite-volume polyhedra with side-pairings that yield manifolds. In fact, we show that arbitrarily many nonhomeomorphic hyperbolic 4-manifolds may share a fundamental polyhedron. As a by-product of our examples, we also show in a constructive way that the set of volumes of hyperbolic 4-manifolds contains the set of even integral multiples of 4π 2 3 . This is “half” the set of possible values for volumes, which is the integral multiples of 4π 2 3 due to the Gauss-Bonnet formula Vol(M) = 4π 2 3 · χ(M) .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.