Abstract

Consistent particle tracking relies on conforming velocity fields that ensure local mass conservation on elements. Cell-centered finite-volume and mixed finite-element methods result in conforming velocity fields but this is not the case for continuous Galerkin methods, such as the standard finite element method (FEM). Nonetheless standard FEM is often used for subsurface flow modeling because it yields a continuous approximation of hydraulic heads, and it naturally handles unstructured grids and full material tensors. Acknowledging these advantages and the wide-spread use of finite-element-type simulations, we present a postprocessing method that reconstructs a cell-centered finite-volume solution from a finite-element-type solution of the variably-saturated subsurface flow equation to obtain conforming, mass-conservative fluxes. Using the linear average velocity field derived from these fluid fluxes, we employ element-wise analytical solutions for triangular prisms to compute particle trajectories and associated travel times. As a result, we can compute consistent particle trajectories for variably-saturated flow solutions generated by node-centered methods, such as finite element or finite difference methods, that do not yield conforming velocity fields. Our flux reconstruction solves a linear elliptic problem whose size is on the order of the number of elements, which is computationally much faster than solving the initial, non-linear transient variably-saturated flow equation. Compared to other postprocessing schemes, our flux reconstruction is numerically stable, fast to compute, and does not induce severe numerical artifacts when applied to heterogeneous domains with strongly varying velocities. However, these advantages come with a comparably high coding effort and the necessity of solving a global system of equations. We show that the results of our flux reconstruction are close to the node-centered primal solution for variably saturated three-dimensional flow with heterogeneous material properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.