Abstract

We present the numerical analysis on the Poisson problem of two mixed Petrov-Galerkin finite volume schemes for equations in divergence form . The first scheme, which has been introduced in [CITE], is a generalization in two dimensions of Keller's box-scheme. The second scheme is the dual of the first one, and is a cell-centered scheme for u and the flux φ . For the first scheme, the two trial finite element spaces are the nonconforming space of Crouzeix-Raviart for the primal unknown u and the div-conforming space of Raviart-Thomas for the flux φ . The two test spaces are the functions constant per cell both for the conservative and for the flux equations. We prove an optimal second order error estimate for the box scheme and we emphasize the link between this scheme and the post-processing of Arnold and Brezzi of the classical mixed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.