Abstract

The incompressible miscible displacement problem in porous media is modeled by a coupled system of two nonlinear partial differential equations, the pressure-velocity equation and the concentration equation. The pressure-velocity is elliptic type and the concentration equations is convection dominated diffusion type. It is known that miscible displacement problems follow the natural law of conservation and finite volume methods are conservative. Hence, in this paper, we present a mixed finite volume element method FVEM for the approximation of the pressure-velocity equation. Since concentration equation is convection dominated diffusion type and most of the numerical methods suffer from the grid orientation effect and modified method of characteristicsMMOC minimizes the grid orientation effect. Therefore, for the approximation of the concentration equation we apply a standard FVEM combined MMOC. A priori error estimates are derived for velocity, pressure and concentration. Numerical results are presented to substantiate the validity of the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.