Abstract

The spinning of slender viscous jets can be asymptotically described by one-dimensional models that consist of systems of partial and ordinary differential equations. Whereas well-established string models only possess solutions for certain choices of parameters and configurations, the more sophisticated rod model is not limited by restrictions. It can be considered as an ϵ-regularized string model, but containing the slenderness ratio ϵ in the equations complicates its numerical treatment. We develop numerical schemes for fixed or enlarging (time-dependent) domains, using a finite volume approach in space with mixed central, up- and down-winded differences and stiffly accurate Radau methods for the time integration. For the first time, results of instationary simulations for a fixed or growing jet in a rotational spinning process are presented for arbitrary parameter ranges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.