Abstract

A theory of finite type invariants for arbitrary compact oriented 3-manifolds is proposed, and illustrated through many examples arising from both classical and quantum topology. The theory is seen to be highly non-trivial even for manifolds with large first betti number, encompassing much of the complexity of Ohtsuki's theory for homology spheres. (For example, it is seen that the quantum SO(3) invariants, though not of finite type, are determined by finite type invariants.) The algebraic structure of the set of all finite type invariants is investigated, along with a combinatorial model for the theory in terms of trivalent "Feynman diagrams".

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.