Abstract
System uncertainties and external disturbances are the major causes of the trajectory tracking performance degradation in nonholonomic wheeled mobile robots (NWMRs). In this article, an adaptive fast nonsingular terminal sliding mode dynamic control (AFNTSMDC) method is proposed to provide enhanced robust and finite-time tracking performance for the NWMR. The proposed AFNTSMDC is a systematic design method based upon both the kinematic and dynamic model of the NWMR. The proposed controller has a simple form without singularity issue in the control input, which makes it practically implementable. The finite-time stability of the proposed tracking-error function is also proved using the Lyapunov function. Finally, circular trajectory tracking experiments are conducted to validate the robustness and convergence rate of the proposed AFNTSMDC scheme in comparison with the existing methods including classic kinematic control, robust sliding mode kinematic control, and conventional sliding mode dynamic control in the presence of uncertainties and external disturbances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.