Abstract
The Stirling and Ericsson cycles are among the important refrigeration systems for the production of very low temperature, especially in the cryogenic range. These cycles have been utilized by a number of engineering firms in the construction of practical systems and have promoted the development of new design of these cycles for different applications. The reversed Stirling and Ericsson cycles are also called gas refrigeration cycle as gas/air being the working fluid and are very similar to each other. The basic Stirling and Ericsson refrigeration cycles are very similar to each other. These refrigeration cycles also slightly deviate from the reverse Carnot cycle because the adiabatic processes of the latter replaced with the isochoric processes in the Stirling cycle and with the isobaric processes in the Ericsson cycle involving a regenerator for heat transfer during the operation of these cycles. Also the performance of these cycles approaches to the Carnot cycle, as the regenerator efficiency tends to unify, which seldom happens in real practice, and hence, the performance of Stirling and Ericsson cycles is always lesser than that of a Carnot cycle for the same set of operating parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.