Abstract

This communication presents the parametric study of an irreversible regenerative Brayton cycle with nonisentropic compression and expansion processes for finite heat capacitance rates of external reservoirs. The power output of the cycle is maximized with respect to the working fluid temperatures and the expressions for maximum power output and the corresponding thermal efficiency are obtained. The effect of the effectiveness of the various heat exchangers and the efficiencies of the turbine and compressor, the reservoir temperature ratio and the heat capacitance rate of heating and cooling fluids and the cycle working fluid on the power output and the corresponding thermal efficiency has been studied. It is seen the effect of cold side effectiveness is more pronounced for the power output while the effect of regenerative effectiveness is more pronounced for the thermal efficiency. It is found that the effect of turbine efficiency is more than the compressor efficiency on the performance of these cycles. It is also found that the effect of sink-side heat capacitance rate is more pronounced than the heat capacitance rate on the source side and the heat capacitance rate of the working fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call