Abstract

This paper utilizes nonlinear adaptive feedback controller to make the complex multilinks networks with perturbations and time-varying delays achieve the finite-time synchronization. By designing nonlinear controllers, we use suitable Lyapunov functions and sufficient conditions to guarantee the finite-time synchronization between the drive system and the response system in terms of adaptive control. Several novel and useful finite-time synchronization criteria are accurately derived based on linear matrix inequality, Kronecker product, inequality analytical technique, and finite-time stability theory. Finally, numerical examples are given to demonstrate the validity and the effectiveness of our theoretical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.