Abstract
This paper deals with the problems of finite-time stochastic stability and stabilization for discrete-time stochastic systems with parametric uncertainties and time-varying delay. Using the Lyapunov-Krasovskii functional method, some sufficient conditions of finite-time stochastic stability for a class of discrete-time stochastic uncertain systems are established in term of matrix inequalities. Then, a new criterion is proposed to ensure the closed-loop system is finite-time stochastically stable. The controller gain is designed. Finally, two numerical examples are given to illustrate the effectiveness of the proposed results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.