Abstract

This paper proposes the finite-time state-constrained adaptive fault-tolerant control method for a class of heavy launch vehicles subject to quantized input signals and actuator faults. Firstly, the attitude dynamic model of the heavy launch vehicles suffering from the actuator faults and disturbances is formulated. Secondly, to deal with the completely unknown nonlinear functions, radial basis function neural networks (RBFNNs) are introduced for approximation and compensation. Meanwhile, the barrier Lyapunov function (BLF) is introduced to ensure that all the states in the closed-loop system are bounded and the constraints of the system states are satisfied. As a result, the finite-time state-constrained adaptive fault-tolerant control structure is constructed for the heavy launch vehicles and the semi-globally practical finite-time stability (SGPFS) of the closed-loop control system is proved. Finally, numerical simulation results show the effectiveness and the satisfactory performance of the proposed control algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.