Abstract

This paper studies the finite-time stability and stabilization of linear discrete time-varying stochastic systems with multiplicative noise. Firstly, necessary and sufficient conditions for the finite-time stability are presented via a state transition matrix approach. Secondly, this paper also develops the Lyapunov function method to study the finite-time stability and stabilization of discrete time-varying stochastic systems based on matrix inequalities and linear matrix inequalities (LMIs) so as to Matlab LMI Toolbox can be used.The state transition matrix-based approach to study the finite-time stability of linear discrete time-varying stochastic systems is novel, and its advantage is that the state transition matrix can make full use of the system parameter informations, which can lead to less conservative results. We also use the Lyapunov function method to discuss the finite-time stability and stabilization, which is convenient to be used in practical computations. Finally, three numerical examples are given to illustrate the effectiveness of the proposed results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.