Abstract

In this paper, finite time stability analysis of fractional-order complex-valued memristive neural networks with proportional delays is investigated. Under the framework of Filippov solution and differential inclusion theory, by using H$$\ddot{o}$$lder inequality, Gronwall inequality and inequality scaling skills, some sufficient conditions are derived to ensure the finite-time stability of concerned fractional-order complex-valued memristive neural networks with fractional order $$\alpha $$: $$0<\alpha <1/2$$ and $$1/2\le \alpha <1$$. In the end, two numerical examples are provided to illustrate the availability of the obtained results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.